hugo-theme-zzo/exampleSite/content/pt/third.md

77 lines
2.3 KiB
Markdown
Raw Normal View History

---
title: "Third"
date: 2019-11-30T20:46:30+09:00
description: "My third presentation"
type: pt
tags:
-
series:
-
categories:
-
featured_image: "feature2/albatross.png"
plugins:
- highlight
- zoom
- math
highlightTheme: monokai
revealBackgroundColor: "" # #fff or rgba() or hsl()
revealBackgroundImage: "" # /images/myImage.png <= static folder path
revealBackgroundPosition: "" # left top, left center, left bottom, right top, right center ...
revealBackgroundRepeat: "" # repeat, repeat-x, repeat-y, no-repeat, inherit
revealBackgroundOpacity: "" # 0~1
revealBackgroundVideo: "" # /videos/myVideo.mp4 <= static folder path, A single video source, or a comma separated list of video sources.
revealBackgroundVideoLoop: false # true, false
revealBackgroundVideoMuted: false # true, false
revealBackgroundSize: "" # cover, contain, ...
revealTheme: league
reveal:
- main:
- sub:
- |
## Syntax highlighting
```go
// If an unknown or empty style is provided, AP style is what you get.
func GetTitleFunc(style string) func(s string) string {
switch strings.ToLower(style) {
case "go":
return strings.Title
case "chicago":
return transform.NewTitleConverter(transform.ChicagoStyle)
default:
return transform.NewTitleConverter(transform.APStyle)
}
}
```
- main:
- sub:
- |
## Mathjax 1
\\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
\frac{\partial X}{\partial u} &amp; \frac{\partial Y}{\partial u} &amp; 0 \\
\frac{\partial X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
\end{vmatrix} \\]
- main:
- sub:
- |
## Mathjax 2
\\[\begin{aligned}
\dot{x} &amp; = \sigma(y-x) \\
\dot{y} &amp; = \rho x - y - xz \\
\dot{z} &amp; = -\beta z + xy
\end{aligned} \\]
- main:
- sub:
- |
## Mathjax 3
\\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \\]
- main:
- sub:
- |
## Mathjax 4
\\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \\]
---