2019-11-17 16:44:04 +00:00
|
|
|
---
|
2019-11-18 19:18:57 +00:00
|
|
|
title: "Katex support"
|
2019-11-17 16:44:04 +00:00
|
|
|
date: 2019-11-15T12:00:06+09:00
|
|
|
|
description: "KaTeX is a fast, easy-to-use JavaScript library for TeX math rendering on the web."
|
2020-01-10 03:16:08 +00:00
|
|
|
draft: false
|
|
|
|
enableToc: false
|
|
|
|
enableTocContent: false
|
2019-11-17 16:44:04 +00:00
|
|
|
tags:
|
|
|
|
-
|
|
|
|
series:
|
|
|
|
-
|
|
|
|
categories:
|
|
|
|
- math
|
|
|
|
libraries:
|
|
|
|
- katex
|
share button(telegram, whatsapp) added, some meta tags added, featured_image deprecated, xmpp, matrix icon added
share button(telegram, whatsapp) added, some meta tags added, featured_image deprecated, xmpp, matrix icon added
2020-01-31 18:51:37 +00:00
|
|
|
image: images/feature2/mathbook.png
|
2019-11-17 16:44:04 +00:00
|
|
|
---
|
|
|
|
|
|
|
|
The following
|
|
|
|
|
|
|
|
$$ \int_{a}^{b} x^2 dx $$
|
|
|
|
|
|
|
|
Is an integral
|
|
|
|
|
2020-01-30 09:39:25 +00:00
|
|
|
$$ \varphi = 1+\frac{1} {1+\frac{1} {1+\frac{1} {1+\cdots} } } $$
|
2019-11-17 16:44:04 +00:00
|
|
|
|
|
|
|
Enable Katex in the config file by setting the `katex` param to `true`. This will import the necessary Katex CSS/JS.
|
|
|
|
|
|
|
|
See the online reference of [supported TeX functions](https://katex.org/docs/supported.html).
|
|
|
|
|
|
|
|
**Note:** For inline math to render correctly, your content file extension must be `.mmark`. See the [official mmark site](https://mmark.nl/).
|
|
|
|
|
|
|
|
```
|
2020-01-30 09:39:25 +00:00
|
|
|
Inline math: $ \varphi = \dfrac{1+\sqrt5}{2}= 1.6180339887… $
|
2019-11-17 16:44:04 +00:00
|
|
|
```
|
|
|
|
|
2020-01-30 09:39:25 +00:00
|
|
|
Inline math: $ \varphi = \dfrac{1+\sqrt5}{2}= 1.6180339887… $
|
2019-11-17 16:44:04 +00:00
|
|
|
|
|
|
|
```
|
|
|
|
Block math:
|
|
|
|
|
2020-01-30 09:39:25 +00:00
|
|
|
$$ \varphi = 1+\frac{1} {1+\frac{1} {1+\frac{1} {1+\cdots} } } $$
|
2019-11-17 16:44:04 +00:00
|
|
|
```
|
|
|
|
|
|
|
|
Block math:
|
|
|
|
|
2020-01-30 09:39:25 +00:00
|
|
|
$$ \varphi = 1+\frac{1} {1+\frac{1} {1+\frac{1} {1+\cdots} } } $$
|