use std::collections::VecDeque; use std::collections::HashMap; #[derive(Debug)] #[derive(PartialEq)] #[derive(Copy, Clone)] pub enum Status { Running, Finished, WaitingForInput, } pub struct Result { pub status: Status, pub instruction: usize, } pub struct Computer { memory: HashMap, position: usize, relative_base: i64, input: VecDeque, output: Vec, } #[derive(Debug)] #[derive(Copy, Clone)] enum Operation { Add, Mul, Input, Output, JumpIfTrue, JumpIfFalse, LessThan, Equals, AdjustRelativeBase, End, // 99 } #[derive(Debug)] #[derive(Copy, Clone)] enum ParameterMode { Position, // 0 Immediate, // 1 Relative, // 2 } impl ParameterMode { pub fn from_int(i: i64) -> ParameterMode { if i == 0 { ParameterMode::Position } else if i == 1 { ParameterMode::Immediate } else if i == 2 { ParameterMode::Relative } else { panic!("Unknown parameter mode integer value: {}", i); } } } impl Computer { pub fn initialize(program: Vec, input: Vec) -> Self { let mut computer = Computer { memory: HashMap::new(), position: 0, relative_base: 0, input: VecDeque::from(input), output: Vec::new(), }; for i in 0..program.len() { computer.mem_put(i, program[i]); } return computer; } fn mem_put(&mut self, address: usize, value: i64) { self.memory.insert(address, value); } fn mem_get(&mut self, address: usize) -> i64 { let value = self.memory.get(&address); if value.is_none() { self.mem_put(address, 0); return 0; } return *value.unwrap(); } pub fn run(&mut self) -> Status { loop { let (op, p1_mode, p2_mode, p3_mode) = Self::decode_instruction( self.mem_get(self.position) ); match op { Operation::Add => { let d1 = self.fetch(self.position + 1, p1_mode); let d2 = self.fetch(self.position + 2, p2_mode); // The original implementation didn't check p3_mode for the Add // operation. let dest = self.mem_get(self.position + 3) as usize; self.mem_put(dest, d1 + d2); self.position += 4; }, Operation::Mul => { let d1 = self.fetch(self.position + 1, p1_mode); let d2 = self.fetch(self.position + 2, p2_mode); // The original implementation didn't check p3_mode for the Mul // operation let dest = self.mem_get(self.position + 3) as usize; self.mem_put(dest, d1 * d2); self.position += 4; }, Operation::Input => { if self.input.len() == 0 { return Status::WaitingForInput; } let dest = self.mem_get(self.position + 1) as usize; let input = self.input.pop_front().expect("Input queue empty... weird"); self.mem_put(dest, input); println!("Input: {}", input); self.position += 2; }, Operation::Output => { let value = self.fetch(self.position + 1, p1_mode); println!("Output: {}", value); self.output.push(value); self.position += 2; }, Operation::JumpIfTrue => { let d1 = self.fetch(self.position + 1, p1_mode); let d2 = self.fetch(self.position + 2, p2_mode); if d1 != 0 { self.position = d2 as usize; } else { self.position += 3; } }, Operation::JumpIfFalse => { let d1 = self.fetch(self.position + 1, p1_mode); let d2 = self.fetch(self.position + 2, p2_mode); if d1 == 0 { self.position = d2 as usize; } else { self.position += 3; } }, Operation::LessThan => { let d1 = self.fetch(self.position + 1, p1_mode); let d2 = self.fetch(self.position + 2, p2_mode); // The original implementation didn't check p3_mode let dest = self.mem_get(self.position + 3) as usize; self.mem_put(dest, if d1 < d2 { 1 } else { 0 }); self.position += 4; }, Operation::Equals => { let d1 = self.fetch(self.position + 1, p1_mode); let d2 = self.fetch(self.position + 2, p2_mode); // The original implementation didn't check p3_mode let dest = self.mem_get(self.position + 3) as usize; self.mem_put(dest, if d1 == d2 { 1 } else { 0 }); self.position += 4; }, Operation::AdjustRelativeBase => { self.relative_base += self.mem_get(self.position + 1); self.position += 2; }, Operation::End => { break; }, other => { panic!("'{:?}' not implemented", other); }, }; } return Status::Finished; } fn fetch(&mut self, pos: usize, mode: ParameterMode) -> i64 { let addr = self.absolute_address(pos, mode); return self.mem_get(addr); } fn absolute_address(&mut self, pos: usize, mode: ParameterMode) -> usize { match mode { ParameterMode::Position => { self.mem_get( pos ) as usize }, ParameterMode::Immediate => { pos }, ParameterMode::Relative => { let p = self.mem_get(pos) as i64 + self.relative_base; if p < 0 { panic!("Attempting to resolve illegale address: {}", p); } return p as usize; } } } fn decode_instruction(code: i64) -> (Operation, ParameterMode, ParameterMode, ParameterMode) { // Opcodes are ABCDE, where the op is DE // the modes for params 1, 2, and 3 as C, B, A // respectively. let mut c = code; let op_int = code % 100; let op = if op_int == 1 { Operation::Add } else if op_int == 2 { Operation::Mul } else if op_int == 3 { Operation::Input } else if op_int == 4 { Operation::Output } else if op_int == 5 { Operation::JumpIfTrue } else if op_int == 6 { Operation::JumpIfFalse } else if op_int == 7 { Operation::LessThan } else if op_int == 8 { Operation::Equals } else if op_int == 9 { Operation::AdjustRelativeBase }else if op_int == 99 { Operation::End } else { panic!("Unknown opcode: {}", op_int); }; let param_3_mode_int = c / 10000; c -= param_3_mode_int * 10000; let param_2_mode_int = c / 1000; c -= param_2_mode_int * 1000; let param_1_mode_int = c / 100; return ( op, ParameterMode::from_int(param_1_mode_int), ParameterMode::from_int(param_2_mode_int), ParameterMode::from_int(param_3_mode_int), ); } } pub fn simulate(v: &mut Vec, input: &mut VecDeque, output: &mut Vec, start: usize) -> Result { let mut program: Vec = Vec::new(); for i in 0..v.len() { program.push(i64::from(v[i])); } let mut ip: VecDeque = VecDeque::new(); for i in 0..input.len() { ip.push_front(i64::from(input[i])); } let mut computer = Computer::initialize(program, vec![]); computer.input = ip; computer.position = start; let r = computer.run(); for i in 0..computer.output.len() { if computer.output[i] <= i64::from(i32::MAX) && computer.output[i] >= i64::from(i32::MIN) { output.push(computer.output[i] as i32); } else { panic!("Output value '{}' out of range for legacy i32 int-code computer", computer.output[i]); } } for i in 0..v.len() { v[i] = computer.mem_get(i) as i32; } return Result { status: r, instruction: computer.position, }; } #[cfg(test)] mod tests { use super::*; #[test] fn test_op_1() { let mut program = vec![1, 0, 0, 0, 99]; let mut input: VecDeque = VecDeque::new(); let mut output: Vec = Vec::new(); simulate(&mut program, &mut input, &mut output, 0); assert_eq!(program[0], 2); } #[test] fn test_op_2() { let mut program = vec![2, 3, 0, 3, 99]; let mut input: VecDeque = VecDeque::new(); let mut output: Vec = Vec::new(); simulate(&mut program, &mut input, &mut output, 0); assert_eq!(program[3], 6); } #[test] fn test_case_3() { let mut program = vec![2,4,4,5,99,0]; let mut input: VecDeque = VecDeque::new(); let mut output: Vec = Vec::new(); simulate(&mut program, &mut input, &mut output, 0); assert_eq!(program[program.len() - 1], 9801); } #[test] fn test_case_4() { let mut program = vec![1,1,1,4,99,5,6,0,99]; let mut input: VecDeque = VecDeque::new(); let mut output: Vec = Vec::new(); simulate(&mut program, &mut input, &mut output, 0); assert_eq!(program[0], 30); assert_eq!(program[4], 2); } #[test] fn immediate_mode_multiply() { let mut program = vec![1002,4,3,4,33]; let mut input: VecDeque = VecDeque::new(); let mut output: Vec = Vec::new(); simulate(&mut program, &mut input, &mut output, 0); assert_eq!(program[4], 99); } #[test] fn negative_integers() { let mut program = vec![1101,100,-1,4,0]; let mut input: VecDeque = VecDeque::new(); let mut output: Vec = Vec::new(); simulate(&mut program, &mut input, &mut output, 0); assert_eq!(program[4], 99); } #[test] fn position_mode_input_equal_to_8() { let mut program = vec![3,9,8,9,10,9,4,9,99,-1,8]; let mut output: Vec = Vec::new(); let backup = program.clone(); simulate(&mut program, &mut VecDeque::from([8]), &mut output, 0); assert_eq!(output[0], 1); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([7]), &mut output, 0); assert_eq!(output[0], 0); } #[test] fn position_mode_input_less_than_8() { let mut program = vec![3,9,7,9,10,9,4,9,99,-1,8]; let mut output: Vec = Vec::new(); let backup = program.clone(); simulate(&mut program, &mut VecDeque::from([8]), &mut output, 0); assert_eq!(output[0], 0); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([7]), &mut output, 0); assert_eq!(output[0], 1); } #[test] fn immediate_mode_input_equal_to_8() { let mut program = vec![3,3,1108,-1,8,3,4,3,99]; let mut output: Vec = Vec::new(); let backup = program.clone(); simulate(&mut program, &mut VecDeque::from([8]), &mut output, 0); assert_eq!(output[0], 1); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([7]), &mut output, 0); assert_eq!(output[0], 0); } #[test] fn immediate_mode_input_less_than_8() { let mut program = vec![3,3,1107,-1,8,3,4,3,99]; let mut output: Vec = Vec::new(); let backup = program.clone(); simulate(&mut program, &mut VecDeque::from([8]), &mut output, 0); assert_eq!(output[0], 0); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([7]), &mut output, 0); assert_eq!(output[0], 1); } #[test] fn position_mode_input_is_non_zero() { let mut program = vec![3,12,6,12,15,1,13,14,13,4,13,99,-1,0,1,9]; let mut output: Vec = Vec::new(); let backup = program.clone(); simulate(&mut program, &mut VecDeque::from([8]), &mut output, 0); assert_eq!(output[0], 1); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([0]), &mut output, 0); assert_eq!(output[0], 0); } #[test] fn immediate_mode_input_is_non_zero() { let mut program = vec![3,3,1105,-1,9,1101,0,0,12,4,12,99,1]; let mut output: Vec = Vec::new(); let backup = program.clone(); simulate(&mut program, &mut VecDeque::from([9]), &mut output, 0); assert_eq!(output[0], 1); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([0]), &mut output, 0); assert_eq!(output[0], 0); } #[test] fn multi_jump() { let mut program = vec![3,21,1008,21,8,20,1005,20,22,107,8,21,20,1006,20,31,1106,0,36,98,0,0,1002,21,125,20,4,20,1105,1,46,104,999,1105,1,46,1101,1000,1,20,4,20,1105,1,46,98,99]; let mut output: Vec = Vec::new(); let backup = program.clone(); simulate(&mut program, &mut VecDeque::from([7]), &mut output, 0); assert_eq!(output[0], 999); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([8]), &mut output, 0); assert_eq!(output[0], 1000); output.clear(); program = backup.clone(); simulate(&mut program, &mut VecDeque::from([9]), &mut output, 0); assert_eq!(output[0], 1001); } #[test] fn blocks_on_input() { let mut program = vec![3,26,1001,26,-4,26,3,27,1002,27,2,27,1,27,26,27,4,27,1001,28,-1,28,1005,28,6,99,0,0,5]; let mut output: Vec = Vec::new(); let result = simulate(&mut program, &mut VecDeque::from([9, 0]), &mut output, 0); assert_eq!(result.status, Status::WaitingForInput); assert_eq!(result.instruction, 6); } #[test] fn relative_base_adjust() { let mut c = Computer::initialize(vec![109, 1, 99], vec![]); c.run(); assert_eq!(c.relative_base, 1); } #[test] #[should_panic] fn negative_memory_access() { let mut c = Computer::initialize(vec![109, -5000, 204, 0, 99], vec![]); c.run(); } #[test] fn relative_example_1() { // The program produces an output of itself let program = vec![109,1,204,-1,1001,100,1,100,1008,100,16,101,1006,101,0,99]; let mut c = Computer::initialize(program.clone(), vec![]); c.run(); for i in 0..program.len() { assert_eq!(program[i], c.output[i]); } } #[test] fn relative_example_2() { // Outputs a 16 digit numbers let program = vec![1102,34915192,34915192,7,4,7,99,0]; let mut c = Computer::initialize(program, vec![]); c.run(); assert_eq!(c.output[0].to_string().len(), 16); } #[test] fn relative_example_3() { // Outputs 1125899906842624 let program = vec![104,1125899906842624,99]; let mut c = Computer::initialize(program, vec![]); c.run(); assert_eq!(c.output[0], 1125899906842624); } }